Architectural and technical high-quality façades made from sandwich panels

Prof. Dr.-Ing. D. Ungermann
Dipl.-Ing. A. Wiegand
Architectural and technical high-quality façades made from sandwich panels

1. Introduction
2. Experimental and numerical research
3. Architectural façade detailing
4. Prospects
Architectural and technical high-quality façades made from sandwich panels

1. Introduction
 • Motivation
 • State of the art
 • German research project

2. Experimental and numerical research

3. Architectural façade detailing

4. Prospects
Motivation

- Economic advantages of sandwich panels lead to their dominant application for industrial buildings.

- Due to a low architectural quality, sandwich panels have not been used for public-office- and multi-storey buildings.
Motivation

- Minor acceptance of architects and builders due to:
 - Only uniaxial overall design of façades with long continuously manufactured sandwich panels
 - Structural detailing as well as joining and fixing do not meet architectural demands
State of the art

- Traditional fixing of sandwich panels:
 - Direct fixing
 (+) Flexible screw position
 (-) Weakening of thermal insulation
 (-) Visible screw heads
 - Indirect / hidden fixing
 (+) Improved appearance
 (-) Reduction of load capacity
State of the art

- Due to production conditions continuously produced sandwich panels have got only two longitudinal profiled panel sides
 - Joining of transversal panel edges by simply adding necessary components, e.g. end plates
 - Details with low architectural quality

Joining detail with low architectural quality

Corner detail with low architectural quality
State of the art

- Possible improvements by modular design and single-part production of sandwich panels
 - Overall optimization of panels as well as joining and fixing according to functional, mechanical and aesthetical demands

- Sophisticated façade design by using the Hoesch Matrix system based on:
 - Individual single-part production
 - Optimized detail solutions for joining, openings, bottom, corner, ..
 - Mineral wool core material to ensure fire protection
German research project

- Due to different reasons Hoesch Matrix was not able to prevail on the market:
 - Use of mineral wool as core material only
 - Complex manufacturing process
 - Design limitations
 - …

- Research objective:
 - Development of design- and construction methods for multi-storey building façades made from sandwich panels that will also satisfy architectural needs
 - Scientific investigations on innovative fixing methods and the overall structural behaviour of sandwich panels depending on different boundary conditions

- Parallel industrial progression of Hoesch Matrix and other architectural façade systems
German research project

- Duration: 28 month (11/2012 to 02/2015)

- Research departments:

- Subsidised by and in cooperation with:

- Industrial partners:
Architectural and technical high-quality façades made from sandwich panels

1. Introduction
2. Experimental and numerical research
 • Global load bearing behaviour
3. Architectural façade detailing
4. Prospects
Global load bearing behaviour

- Modular design of modern sandwich panel façades leads to biaxial load bearing behaviour

⇒ In total 35 tests have been performed to analyse the load bearing capacity of sandwich panels depending on different support conditions:

Sandwich façade with higher architectural quality and small length ratio (Example: Kingspan Benchmark)

Two side supported test specimen (longitudinal direction)

Two side supported test specimen (cross direction)

Four side supported test specimen
Global load bearing behaviour

- Test setup:
 - Controlled displacement (2 mm/min)

 Modular steel frame system to figure two- or four side line support
 Special air cushion at the bottom to obtain a uniformly distributed load
 Upside down setup to achieve a simple arrangement / rearrangement of the specimen

Test setup with mounted foam core sandwich panel
Global load bearing behaviour

- **Test parameters:**
 - Load type: uniformly distributed load
 - Support type: two- or four-sided line support (40 mm width)
 - Panel size: 90 cm x 90 cm (profiled edges removed)

- **Varied parameters:**
 - Face layer thickness: 0.5 mm / 0.6 mm
 - Face layer profiling: flat / profiled
 - Core material: polyurethane / mineral wool

- **Measurement:**
 - Six inductive displacement sensors
 - Ten strain gauge strips
Global load bearing behaviour

- Test series No.1 - tested parameters:
 - Core material: polyurethane
 - Core thickness: 60 mm
 - Face layer profiling: none
 - Face layer thickness: 0.5 mm / 0.5 mm

- Support types:
 - uniaxial
 - biaxial

Test specimen with uniaxial line support
Test specimen with biaxial line support
Global load bearing behaviour

- Test series No.1 - results: (uniaxial)
 - Foam core shear failure with minor dispersion of results
 - Results corresponding with calculated values
Global load bearing behaviour

- Test series No.1 - results: (biaxial)
 - No global panel failure
 - Local plastification at line supports which is corresponding with FE-Simulation results

- Front view test specimen at the end of the test
- Detail: local plastification at line supports
- FE-Simulation results plot: face layer stress (ANSYS 14.0)
Global load bearing behaviour

- Test series No.1 - comparison of support conditions: ![condition](image)

- Load-displacement-curve

 - Increase of load capacity due to four-sided support and biaxial load transfer above 70%
 - Biaxial tests failure is probably caused by local stress at line supports
 - Does local failure occur when increasing the panel size?

![Graph showing load-displacement curve with markers for additional increase, load increase, local failure, and measurement range exceeded.](image)
Global load bearing behaviour

- Test series No.2 - tested parameters:
 - Core material: polyurethane
 - Core thickness: 60 mm
 - Face layer thickness: 0.5 mm / 0.6 mm(p)
 - Face layer profiling
 - Support types:
 - Uniaxial (⊥)
 - Biaxial
 - Uniaxial (∥)
Global load bearing behaviour

- Test series No.2 - comparison of support conditions:

- Failure modes are comparable to test series No. 1
- Increase of load capacity due to four-sided support and biaxial load transfer about 45 % (70 % at test series No.1)
- Decrease of load capacity due to parallel profiling alignment
Global load bearing behaviour

- Test series No.2 - comparison of profiling alignment and face layer thickness:

<table>
<thead>
<tr>
<th>Profiling Alignment</th>
<th>Face Layer Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpendicular (⊥)</td>
<td>0.6p/0.5</td>
</tr>
<tr>
<td>Parallel (∥)</td>
<td>0.5/0.5</td>
</tr>
<tr>
<td></td>
<td>0.6/0.6</td>
</tr>
<tr>
<td></td>
<td>0.6p/0.5</td>
</tr>
</tbody>
</table>

- Profiling perpendicular (⊥) to line supports: negligible influence of face layer profiling
- Profiling parallel (∥) to line supports: reduction of load capacity and rigidity due to

![Graph showing load bearing behaviour](image-url)
Global load bearing behaviour

- Test series No.2 - comparison of face layer thickness with biaxial support:
 - Profiled sandwich panel shows lowest load capacity and rigidity although face layer thickness (0.5/0.6p) fits between 0.5 and 0.6
 - Profiling parallel (∥) to line supports also reduces biaxial load capacity and rigidity

\[F_u = 28 \text{kN} \]
Global load bearing behaviour

- **Summary:**

<table>
<thead>
<tr>
<th>Core material and thickness</th>
<th>Face layer profiling</th>
<th>Face layer thickness</th>
<th>Support condition</th>
<th>Ultimate load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane d = 60 mm</td>
<td>no</td>
<td>0.5/0.5</td>
<td>uniaxial</td>
<td>18 kN</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>0.5/0.5</td>
<td>biaxial</td>
<td>31 kN*</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.6p/0.5</td>
<td>uniaxial (\perp)</td>
<td>19 kN</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.5/0.5</td>
<td>biaxial</td>
<td>28 kN*</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.6p/0.5</td>
<td>uniaxial (\parallel)</td>
<td>13 kN</td>
</tr>
</tbody>
</table>

* additional increase?

- **Considerable increase of load capacity and rigidity due to biaxial load transfer**

- **Longitudinal face layer profiling causes slight decrease of biaxial load bearing behaviour**
Global load bearing behaviour

- Test series No.2 - numerical verification of results:
 - FE-Software ANSYS 14.0
 - Face layer: SHELL181
 - PUR-Core: SOLID45
 - FE-Simulation of experimental tests
 - Experimental tests to adjust FE-Simulation with exact material parameters

<table>
<thead>
<tr>
<th>Material parameter</th>
<th>Experimental result</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_c</td>
<td>3.36</td>
</tr>
<tr>
<td>G_c</td>
<td>2.85</td>
</tr>
<tr>
<td>f_c</td>
<td>0.092</td>
</tr>
<tr>
<td>f_y</td>
<td>361</td>
</tr>
</tbody>
</table>

Tests performed to analyze material parameters
Global load bearing behaviour

- Test series No.2 - numerical verification of results:

- Gain of displacement due to face layer profiling of all-around line supported sandwich panels can be verified
Global load bearing behaviour

- Test series No.3 - tested parameters:
 - **Core material**
 - mineral wool (120 kg/m³)
 - Core thickness 50 mm
 - Face layer thickness 0.5 mm / 0.6 mm
 - Face layer profiling none
 - Support types:
 - core alignment typical (⊥)
 - biaxial
 - core alignment (‖)

Test specimen with mineral wool core and two sided line support

Test specimen with mineral wool core and four sided line support
Global load bearing behaviour

- Test series No.3 - comparison of core alignment with uniaxial support:
 - Load capacity and rigidity depend on the mineral wool core alignment

- Load capacity and rigidity depend on the mineral wool core alignment

Load [kN] vs. Displacement [mm]

- $F_u = 15\,\text{kN}$
- $F_u = 6\,\text{kN}$

Shear stress failure on test specimen with core alignment II

Huge deformation and low rigidity of test specimen with core alignment \perp

8kN: Measurement range exceeded
Global load bearing behaviour

- Test series No.3 - results four sided line support
 - No global panel failure
 - Local plastification at line supports

26kN: Measurement range exceeded

$F_u = 15kN$

Local plastification at line supports
Global load bearing behaviour

- Test series No.3 - comparison of support conditions: □ vs. □ vs. □

- No increase of rigidity in linear-elastic range due to biaxial support

- After reaching the uniaxial ultimate load capacity load reserves can be used

Additional load reserves

Similar results

```
F_u=15kN
F_u=6kN
```

Force [kN]

Displacement [mm]
Global load bearing behaviour

- Summary:

<table>
<thead>
<tr>
<th>Core material and thickness</th>
<th>Face layer profiling</th>
<th>Face layer thickness</th>
<th>Support condition</th>
<th>Ultimate load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane</td>
<td>no</td>
<td>0.5/0.5</td>
<td>uniaxial</td>
<td>18 kN</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>0.5/0.5</td>
<td>biaxial</td>
<td>31 kN*</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.5/0.5</td>
<td>uniaxial ⊥</td>
<td>19 kN</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.5/0.5</td>
<td>biaxial</td>
<td>28 kN*</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>0.6p/0.5</td>
<td>uniaxial II</td>
<td>13 kN</td>
</tr>
</tbody>
</table>

Mineral wool	no	0.6/0.5	uniaxial ⊥	15 kN
	no	0.6/0.5	biaxial	15 kN*
	no	0.6/0.5	uniaxial II	6 kN

- Polyurethane:
 - Considerable increase of load capacity and rigidity due to biaxial load transfer

- Mineral wool:
 - No increase of rigidity in linear-elastic range due to biaxial support

* additional increase?
Architectural and technical high-quality façades made from sandwich panels

1. Introduction
2. Experimental and numerical research
3. Architectural façade detailing
 • Demands for architectural façades
 • Openings for a solution
 • Overall façade design
4. Prospects
Demands for architectural façades

- Architectural design
 - Office- and multi-storey buildings have got representative character
 - Architects and builders should be free to design their individual concepts

- Economic demands
 - Cost effectiveness of sandwich panel façade should be obtained
Demands for architectural façades

- Thermal insulation and noise protection
 - High demands on construction physics (with rising trend)

- Modular design
 - Due to standardised interior construction grids public- and office buildings require façades which match this modular design
Openings for a solution

- **Major problem:** Joining the unprofiled sandwich panel edges
 - Request of architects: Equivalent joining of longitudinal and transversal edge

- **Additional request for façades with high architectural quality:**
 - Segmentation of façades (which leads to more transversal joints)
 - Huge amount of window surface in office- and multi-storey buildings
Openings for a solution

- 1st approach:
 - Subsequent machining of transversal edges
 - Additional production step in an already highly optimized and efficient production process is necessary
 - Increased prices on the market

⇒ Economic risk for the sandwich industry
Openings for a solution

- 2nd approach:

 - Design of frame structures which are surrounding sandwich panels and covering traditional joints

 ➔ Existing sandwich panels for industrial purpose can be used in new market segments using modular design

 ➔ Open new market segments with lower financial risk
Openings for a solution

- Frame structure surrounding sandwich panels
 - Option: Development of an “adapter-system” made from extruded aluminium
 - Cost-effective manufacture of complex shapes
 - Costs about 1,000 € to 5,000 € for each die (shape form) depending on the adapter shape
 - Costs for aluminium itself

Profiles with complex shapes made from extruded aluminium
Openings for a solution

- Frame structure surrounding sandwich panels
 - Improved option: modular “adapter-system”
 - Basic module matched with insets (slot, key, unprofiled edge, windows)
Openings for a solution

- Frame structure surrounding sandwich panels
 - Improved option: modular “adapter-system”

⇒ Basic module matched with insets
 (slot, key, unprofiled edge, windows)
Openings for a solution

- Frame structure surrounding sandwich panels
 - Improved option: modular “adapter-system”
 - Basic module matched with insets (slot, key, unprofiled edge, windows)
Openings for a solution

- Frame structure surrounding sandwich panels
 - Improved option: modular “adapter-system”
 - Disadvantage: increased assembly effort
 - Disadvantage: increased width and increased material consumption
Openings for a solution

- New development: individually matched “adapter-system”

 ➡️ Optimization of costs and on-site building process
Openings for a solution

- New development: individually matched “adapter-system”

- Optimization of costs and on-site building process

 Adapter: inner surface

 Packing made from extruded polyethylene (PE) for thermal insulation

 Adapter: exterior

 Adapter: cover cap

Individually matched “adapter-system” joint slot and key
Openings for a solution

- New development: individually matched “adapter-system”
 - Connection of inner surface and exterior with special rust-proof screws
 - Geared screw intake
 - Screw channel in PE-packing
 - Drilling adapter exterior at designated place
 - Individually matched “adapter-system” joint slot and key
Openings for a solution

- New development: individually matched “adapter-system”
 - Connection of inner surface and exterior with special rust-proof screws
 - Ultimate load about 3.0 kN each screw (tested)

➤ Approach: screw spacing about 25 cm
Openings for a solution

- New development: individually matched “adapter-system”

- Design variation (visible adapter width 10 cm, Sandwich panel thickness 16 cm):

 - Schematic: joint slot / key
 - Schematic: joint slot / unprofiled edge
 - Schematic: joint slot / window
Openings for a solution

- New development: individually matched “adapter-system”
 - Additional benefit:
 - Conformation of sandwich panel width to office building construction grids by adjusting the adapter size (width)
 - Two screw channels to ensure denseness
Openings for a solution

- New development: individually matched “adapter-system”
 - Design variation (visible adapter width 15 cm, Sandwich panel thickness 16 cm):
Openings for a solution

- Option: individually matched “adapter-system”
 - Additional benefit:
 - Integration of further details like corner, eave, ridge into the “adapter-system”
Openings for a solution

- Option: individually matched “adapter-system”

 - Additional benefit:

 - Installation of sandwich panels on existing façades with uneven surfaces like brickwork, ..

 - Option: Joining the adapter profile and an load bearing substructure inside the building
Overall façade design

- Case study:
 - Office building façade with industrial sandwich panels (vertically and horizontally adapter-mounted)
Overall façade design

- Design advantages of façades with adapter-mounted sandwich panels
 - Variable combination of sandwich panels and windows
 - Variable design possibilities with adapter front cover layout
 - Variable combination of sandwich panels with different appearance
Architectural and technical high-quality façades made from sandwich panels

1. Introduction
2. Experimental and numerical research
3. Architectural façade detailing
4. Prospects
Prospects

- Global load bearing behaviour
 - Further experimental tests:
 - Variation of length/width ratio
 More knowledge of biaxial load bearing behaviour
 - Further numerical analysis:
 - Verification of experimental tests results
 - Parameter studies
 Extension of parameter range

FE-Analysis deformation plot
Prospects

- Architectural façade detailing
 - Optimization of the “adapter-profile” design layout
 - Research on the “adapter-system” load bearing behaviour
 - Further research on overall façade design
Acknowledgement

- The research project (IGF No. 453 ZN) has been carried out with the financial support of the Arbeitsgemeinschaft industrieller Forschungsvereinigung „Otto von Guericke“ e.V. (AiF) Cologne, Germany and funding from the German Federal Ministry for Economy.

- Many thanks to Forschungsvereinigung Stahlanwendung e.V. (FOSTA) and Internationaler Verband für den Metallleichtbau (IFBS) for their supervision and support.

- Many thanks also our industrial partners for sharing their know-how and supporting our tests.
Architectural and technical high-quality façades made from sandwich panels

Thank you for your attention.